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1. Summary
This report deals with the various types of vibration of the complete hull

structure which may be set up by periodic forces which synchronize with one of the

natural frequencies. It includes a review of the investigations made in the field

of hull vibration from 1he original studies of 0. Schlick in 1884 up to date. It

also gives an account of model experiments and full scale measurements conducted

recently at the U. S. Experimental Model Basin. Particular attention is given to

the methods of J. L. Taylor, E. Schadlofsky, and F. M. Lewis which are considered

the most practical of the theoretical methods. The limitntions of these methods

are pointed out and the relation betvween the vibration problem and the strength

problem is emphasized. An appraisal is given of the method of F. M. Lewis for

estimating the effect of the surrounding water on the natural frequency. The con-

clusion is drawn that for naval vessels the most practical orocedurp is to est'imate

the natural frequencies from measurements previously made on ships of the same

class by selecting the appropriate value of the Schlick constant. The graphical

methods are recommended only for cases of radically new design where empirical

constants are not available.

2. Introduction

Ship vibration has been receiving increasing attention since the pioneer

work of 0. Schlick (1)* in 1884, and at present many data are available both on the

practical and theoretical sides of this problem. The calculation of the two-noded

vertical flexural frequency of a ship is an interesting problem and has been given

by far the most attention by theoretical investigators. As for other possible

types of vibration such as horizontal, torsional, and longitudinal, while theo-

retical solutions have been proposed the data required for the use of these methods

are usually not available and can be obtained only by laborious computations. As

will be shown, even in the case of the vertical, two-noded vibration there are

still several doubtful correction factors of considerable magnitude which must be

applied after making the theoretical computation, and it would seem that much of the

effort spent on the academic problem of the natural frequencies of non-uniform bars

night more profitably have been spent in collecting data on actual frequencies

from which practical engineers could forecast the critical frequencies of proposed

designs.

One justification for the consideration given the vertical two-noded fre-

quency is its close relation to the bending strength of the vessel. Both the

strength of the ship under static or dynamic load and its two-noded vertical fre-

quency depend upon the moment of inertia of its section about a horizontal axis.

While for the same type of section and same displacement the natural frequency will

vary with the distribution of the load, the general principle holds that the higher

the natural frequency the greater the bending strength of the ship.

* Numbers in parentheses correspond to references in the bibliography at the end

of the report.
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The measurement of natural frequencies has proved to be of practical im-

portance in the design of bridges and should also be of value in ship design. The

action of the surrounding water, however, renders the ship problem more complicated.

Purely from the strength point of view a ship should be designed so as to have the

highest attainable vertical two-noded frequency under a fixed condition of loading,

in accordance with the general principle of mechanics that the natural frequency

varies as '' mass "
lymass

3. Calculation of the Two-noded Vertical Frequency

A. Derivation of the Theoretical Freguency
In the calculation of the flexural natural frequencies the ship is considered

as a bar of non-uniform cross-section with free ends. The problem of the free-free

bar of uniform cross-section was solved by Lord Rayleigh (2) and the natural fre-
quency of the two-noded flexural vibration can be expressed by the simple formula:

In this formula . Vr" W L.•. ................... (1

E = modulus of elasticity in lb/in'

n - frequency in vibrations per second

I - moment of inertia of section in ft' ins units

L = length of bar in feet
W = mass of bar in slugs (weight in lb/32.2)

For ships, frequencies are usually expressed in vibrations per minute and the dis-
placement is given in tons. Also the modulus of structural steel can be given the

common value 30 x 106 lb. per sq. in. without serious error. Using these quanti-
ties the free-free bar formula becomes

N = 60 x -_ 3Dx1 x' 1.39 x 05j DL ..... ....... (2)
8 x 24 0 x L3

where N is expressed in vibrations per minute and D is the displacement or weight
in tons.

In 1894 0. Schlick (1) proposed an empirical formula for the two noded
flexural frequency of a ship similar to the above formula:

N = c.... FM. . .... ... . .. ..... . .. ... . .. ......... (3)

where c is an experimental constant called 'Schlick's constant" and varies from
1.2& x 105 to 1.57 x 105 according to the type of vessel. In this formula N is

vibrations per minute, I is the moment of inertia of the midship section in ft.'

in.', D is the displacement in tons, and L is the length in feet.
This formula failed to check measured values in numerous cases and it was

recognized that a more accurate calculation was required to take into account the
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con-uniformity of weight distribution and the variation in the ship section.

A theoretical solution for the flexural natural frequencies of a free-free

non-uniform bar may be obtained by solving the differential equation

2 (I -. m. = 0 ............. (4)
dxx (El x)+mt

Here x represents a distance along the length of the bar, y represents the vertical

displacement of any point from its normal position, E is the modulus of elasticity,
I is the moment of inertia of the cross section, t represents time, and m is the mass

per unit length. This equation is base on the flexure of slender beams and gives

the relation between the second derivative of the bending moment with respect to
length and the dynamic load (mass times acceleration) at any instant during vibra-

tion. If the amplitudes are small in proportion to the length the assumption may

be made that every point of the bar describes a linear simple harmonic motion in

the y direction.. If w = 271 times the natural frequency, and y is the amplitude at
any point, the acceleration at the instant of maximum flexure is w'y. Considering

the bar at this instant equation (4) becomes

.. .(EI K4 .- m.y = 0 ....... ............. (5)

It is possible to deduce the frequency from equation (5) in certain cases
where m and I are known functions of x. In the case of the ship, however, these

functions cannot be expressed in simple analytical form.
Lord Rayleigh (2) showed that if in the case of a non-uniform bar the varia-

tion of amplitude along the length were assumed to be the same as in the case of a
uniform bar the error in the calculated frequency would be slight. On this basis
an approximate solution for the frequency of a ship can be developed by assuming
that at the instant of maximum flexure during vibration the relative deflections at
points along the length are proportional to the amplitudes in a uniform bar. Thus
the case is analogous to that of a statib beam except that the deflections are due

to dynamic loads which at any point are equal to the product of the mass and the

acceleration at that point. If the amplitudes are small any point can be con-

sidered to be executing a linear simple harmonic motion and at maximum deflection

the acceleration is 4 17r nly, where n is the natural frequency and y is the ampli-

tude.

The assumption of an amplitude profile makes it possible to compute the
dynamic load (40' n' my) as a function of length in relative terms which are pro-

portional to the unknown frequency. The actual value of the deflections may then

be deduced from the elastic properties of the hull just as is done in the strength
calculations of ships. From the absolute value of deflections due to an assumed
dynamic load the frequency may then be determined.

A solution can also be obtained for the frequency with the same assumption
of an amplitude profile by equating the potential. energ at the position of maximum
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deflection to the kinetic energy in passing through the position of maximum veloc-

ity.
In the bibliography will be found numerous articles of interest in the his-

torical development of these methods. This report is confined to what seem to be

the most practical methods at the present time, namely the graphical methods of J.

L. Taylor (5) and E. Schadlofsky (6) and the tabular method of F. M. Lewis (7).

It should be noted that these calculations give only the theoretical frequency

(Nth) namely the frequency which the ship would have if there were Ao6 water effect

and if the deflections were due only to simple flexure as in the case of slender

beams.
Taylor's method may be summarized briefly as follows:- If the amplitude at

the forward perpendicular is assumed to be such as to make the acceleration at

maximum deflection equal to the acceleration of gravity, the dynamic load at this

point will be equal to the weight and at any other point will be obtained by multi-

plying the weight by the corresponding amplitude, the assumption also being made

that the amplitudes vary as in a uniform bar whose end amplitude is unity. Having

the dynamic load curve the next step is to find the resulting deflection by the us-

ual graphical method applicable to beams which involves four integrations. If the
initially assumed relative amplitudes were correct the deflection curve thus ob-

tained would correspond to the initial curve except for the scale factor of inte-

gration. By reading the absolute value of the amplitude at the forward perpen-

dicular which would make the acceleration equal to "g" the theoretical frequency is

found by solving for n in the equation

4) nYv.p. = g. .... ................. (6)

where Yv.p. is the computed amplitude at the forward perpendicular.
The actual procedure is as follows: the curve of relative amplitudes for the

free-free uniform bar is plotted (the end value being made equal to unity). These

values quoted from Taylor's paper, are as follows:

Station 0 [ 1 Ij 2 21 3 3j 4 41 5

0 91 9 8-j 8 71 7 Q_ _6 51
Rel.Amp. 1.0 .768 .537 .313 .097 -. 099 -. 272 -. 414 -. 521 -. 58 -.608

The weight curve is then multiplied by the corresponding amplitude thus giving the

dynamic load curve which will be of negative sign between the nodes if the ampli-

tudes are assumed positive at the ends. Fig. (1) shows the graphical computation

for the U.S.S. HAMILTON by Taylor's method which may be used as an illustration.

Upon integrating the dynamic load curve by means of the integraph it will in gen-

eral be found that the shear curve does not close as required by dynamics. Taylor

recommends joining the two ends of the shear curve and reading off the values with
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respect to this inclined base line when the residual shear is small. The replotted

shear curve is then integrated giving the moment curve which probably will not

close. As dynamics requires the moment to be zero at the forward perpendicular
Taylor joins the ends of the moment curve, reading off the moment values from the

inclined base. Taylor points out, however, that the strictly correct method of
fulfilling the end conditions is to revise the assumed amplitude curve by a paral-
lel shift and a rotation of its base and thus obtain a new set of amplitude factors

which when multiplied by the weight curve will give a new dynamic load curve.

The precise method of making these base corrections has been clearly shown

by E. Schadlofsky (6). The first dynamic load curve is integrated twice giving a

shear and a moment curve neither of which closes. The residual values of shear and

moment at the forward perpendicular are designated as RSlv.p" and RMlv.p" respec-

tively. In order to make the base corrections by Schadlofsky's method the follow-

ing procedure must be followed. First must be determined the quantity

JG = I x'1 V where x is the distance of an element of weight W from a plane passing
through the ship's center of gravity and perpendicular to the x axis. This

quantity JG is numerically equal to the moment of inertia of the area under the
weight curve about a vertical line through the center of area. The distance from

the center of gravity to the forward perpendicular is designated as Ia. The cor-

rection of the base of the assumed amplitude curve is made first by a parallel

shift designated by ys and second by a rotation of the shifted base about the point
where it intersects the vertical line through the center of gravity. The amount by
which the rotation raises or lowers the base at the forward perpendicular is des-

ignated by Yov.1". The values of these terms are

RSl
Ys weight of ship ....... )

and -12 [RM ivp. -RSlv.p. x 12 (
Yo'. p. = .. JG()

botb ys and Yov.p" being dimensionless.

[Note: Formula (8) differs from the formula for yovo.p given in Eq. (7) of

Schadlofsky's paper. A recheck of the derivation showed that the terms

(Ylv.p. - Y.) should be omitted.)
The amplitude values measured from the shifted and rotated base are then

divided by the ordinate at the forward perpendicular. Thus is obtained a new am-

plitude curve which will satisfy both end conditions and at the same time has unity

value at the forward perpendicular. The previously outlined method of obtaining

the dynamic load, shear, and moment curves is then repeated using the new set of

amplitude factors. Schadlofsky points out that the assumption of any set of ampli-

tude factors that fails to satisfy the end conditions will give too low a value for

the theoretical frequency.
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j{aviug ,tbtained the momienL curve by eith, r Taylor's or Schadlofsky's method

the remaining steps are the same for both methods. First the moment values are

read off for twenty sections and divided by the corresponding values of moment of

inertia of the section and the curve of M/I is plotted. A double integration of this

M/I curve gives the curve Ey from which the deflections produced by the assumed

dynamic load may be deduced.

In carrying out these steps several points should be noted. After each inte-

gral is drawn by the integraph its base must be located which is equivalent to de-

termining the constant of integration. In the case of the shear curve the base is

determined by the condition that the vertical shear must be zero at the ends since

there are no external forces. For the same reason the moment must be zero at the

ends, and the M/I curve which is a plotted curve is therefore zero at both ends.

The curve obtained by integration of the M/I curve is usually referred to as the

slope curve since its ordinates represent the slope of the final deflection or E3

curve. The base for the slope curve is usually selected so as to intersect it about

amidships. After integrating the slope curve with respect to this base the ends of

the final Ey curve are jointed and the connecting line is used as a basis of meas-

urement. This eliminates any error due to the incorrect selection of the base of

the slope curve as the effect of integrating a curve with respect to a wrong base

is to tilt the integral curve but not to change values measured vertically from a

line joining the two ends. The proper value of Ey at the forward perpendicular is

then obtained as follows: Denote by (Ey)max the maximum value of the Ey curve meas-

ured vertically from the line joining the ends, and let yv.p. be the assumed ampli-

tude at the forward perpendicular after making the base corrections. Let ymax be

the maximum amplitude measured from the line joining the ends of this corrected

amplitude curve. Then:
E~v~p (EY)ma x

max Ymax

The value of Ey at the forward perpendicular is then divided by E which gives

Yv.p. (the amplitude required to make the acceleration at the forward perpendicular

equal to the acceleration of gravity). The frequency is found by formula (6) pre-

viously given. The value of E to be used should be the average test piece value of

the steel used in the bull. The practice of using a reduced value of E has been su-

perseded by the corrections made to the theoretical frequency for the effect of

elastic behavior.

There is no way of checking the theoretical frequency of a ship by actual

measurement because of the water effect, but Schadlofsky has checked it for several

dynamic models of ships, vibrating them out of the water.

For comparison graphical computations are shown for the U.S.S. HAMILTON by

both Taylor's simplified method and the method of Schadlofsky (see Figs. 1 and 2).

In the Taylor computation Nth was deduced as follows: The midship value of

the Ey curve measured vertically from the line joining the enes is 14.03N. The



TWO-NODED VIBRATION CALCULATION Uss
BY TAYLOR'S SIMPLIFIED METHOD

LONGITUDINAL StALE-I INCH-7.75FT.
A-DYhIAMIC LOAD- I INCH*.667 TONS/FT.

B- SHEAR - I INCH - 36.2 TONS_________

C-BENDING MOMENT- I INCH-1400 TON FT.

D-WM/- I INCH-.0560 TON/INCH 2 FT.

E- SLOPE- I INCH-- 3. 47 TON/INCH 2

F- EY- I I NCH- 228.7 TON FT/ INCH 2

NOTE- AE
DUE TO THE USE OF THE INTEGNAPI4
EACH INTEGRAL CUR~VE IS DISPLACED
TO THE LEFT OF THE CURVE INTEGRATED F

FRAME NO. 11"

Fig. 1. Graphical Computation



- U.S. S HAMILTON

88 1/20

ical Computation for U.S.S. HAMXLTON by Taylor's Method.



U S.S. HAM ILTO N

WAE TO THE USE OF THE INTEONAPH
EACH WTESiAL. CURVE 1S DISPt.ACEO
TO THE LEFT OF THE CURVE WOTORATED

F

/Z

TWO-NODED VIBRATION CALCULATION ___

BY SCHADLOFSKY'S METHOD- BASE
CORRECTIONS PREVIOUSLY MADE

LONGITUDINAL SCALE- I INCH- 7.75 FT.

A-DYNAMIC LOAD- I INCH • .667 TONS/FT

B-SHEAR-I INCH a 20.7 TONS ....
C-BENDING MOMENT- I INCH,- 881 TON FT

D-M/t-I INCH,.0392 TON/INCH2FT / "E
E- SLOPE- I INCH- 3.23 TON/INCH2

'f- E Y- I INCH - 200.2 TON FT/ I NCH"2

mum No. 177

Fig. 2. Graphical Computation for U.S. S. EHILTON

Method.



U.SS HAMILTON

as81/2

.-al Computation for U.S. S. HAMILTON by Schadlofaky's
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equivalent end value (according to Taylor) is10 - 8.73 in. (.608 being the ratio1.608

of center to end deflection of a free-free uniform bar). Applying the scale factor

this gives for the end value: Ey = 8.73 x 228.7 = 1997 ton ft./in." Taking E as

13,300 tons/in.9 (equivalent to 2.1 x 106 kg/cmu used by 8chadlofsky) we get for

the deflection at the forward perpendicular
1 1= - 0.1502 ft.

hence, by Eq. (6) 1_f ii_ 2Li 2.33 per sec.

Nth = 140 per minute.

In the computation by Schadlofsky's method (Fig. 2) the maximum value of the

]y curve is 13.15 in. The ratio of end to maximum value of the corrected amplitude

curve is 1hence . 13.15 = 8 70 in.uv hn v.p. 1.51

The scale factor is 1 in. - 200.2 ton ft./in.'

Hence
= 8.70 x 200.2 0.131 ft.

Yv. P. -13300

n =•• =2- ;2 • = 2.50 per sec.

Nth = 150 per minute.

The difference between the values computed by the two methods is due to the

non-fulfillment of the end conditions by Taylor's method. The residual shear ob-

tained by integration of the first dynamic load curve is 15 per cent of the weight

of the ship. With a residual of such a magnitude, joining the ends of the shear

curve causes considerable error. In general it may be said that Taylor's simplified

method will give too low a value for the natural frequency if the residual shear

exceeds about 4 per cent of the weight.

The tabular method of F. M. Lewis (7) offers a convenient substitute for the

graphical methods. In this method the integrations are carried out by computation

using the trapezoidal rule, dividing the ship into twenty parts. The method in-

volves the initial assumption that the amplitudes vary as in a free-free uniform

bar and these amplitudes are later corrected to satisfy the end conditions. After

the corrected amplitude function is obtained the frequency is computed by the

energy method. The kinetic energy and potential energy are summed up for the

twenty sections and equated. Where the weight and moment of inertia curves are not

too irregular this method should give as accurate results as Schadlofsky's. For

very irregular cases the same method could be worked out with a greater number of

stations. The method involves considerably less labor than the graphical methods
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and has the advantage that an integraph is not required. A computation for the

U.S.S. HAMILTON by this method is given in Table I. For the definition of terms
used in this table reference should be made to ref. (7).

h. Correction for Effect of the Surrounding Water

The largest single correction to the theoretical frequency is that due to
the effect of the surrounding water. J. B. Henderson (9) and other early investi-
gators, in the light of the theory of damped oscillations, considered that the

water had a negligible effect upon the natural frequency.

Apparently the first experimental investigation of this question was under-
taken by H. W. Nicholls (10) in 1924 by model experiments. Nicholls vibrated steel
strips 30 in. x 2 in. to which were fastened wooden blocks, the exciting impulses
being produced by electro-magnets. The natural frequencies were measured in air
and in water, the models being supported at the computed free-free nodes. Nicholls
found that the effect of the water was to lower the natural frequency considerably
and that this effect could conveniently be expressed in terms of the increase in
mass which would produce the same change in the natural frequency, the so-called
"virtual mass". Hence the virtual mass was defined by the equation

frequency in water = D
frequency in air U+.M.

where D ib the displacement,'and V.U. is the virtual mass.

Nicholls found that for a rectangular model of breadth b and depth d the re-

lation between virtual mass and displacement could be expressed as
V . M . = b-- b 0.37 + 0,20 .... ............. .. (10)

the ratio being in this case 0.78. For a triangular model he found,

V. M.
= 0.70

In 1928 E. B. Moullin and A. D. Browne (11) conducted similar experiments
with solid steel bars, a method which seems scarcely applicable to the ship problem

because of the density. They did, however, make a full-scale test of a racing
eight, 60 feet long and weighing 280 lb., supporting it out of water at the nodes.
They found the natural frequency in water to be 54 per cent of its value in air
which represents a virtual mass of 243 per cent of the displacement.

The first theoretical treatment of the water effect for actual ships is due
to F. M. Lewis (12). In his theory the water vibrating with the hull at any
section is considered to be one half the quantity of water which would move with
the section and its image if submerged in a liquid of infinite volume, this problem
being capable of a theoretical solution for certain forms approximating ship forms.
The ship is divided into a convenient number of sections for each of which the
appropriate form is to be used. A correction factor is introduced to allow for the
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fact that the motion of the water is not confined to transverse planes. Lewis gavp

the values for a number of forms similar to ship forms. The virtual mass having

been computed for as many sections as desired from Lewis' curves, these increments
are to be added to the weight curve of the ship after which Taylor's or other

methods are to be applied in the usual manner. It is to be noted that the correc-

tions will not be the same as would be obtained by adding up the virtual mass of

all sections and applying the water correction in one lump by formula (9). The

distribution of the water effect must be taken into account.

The logic of extending the hydrodynamic problem of the water moving with a

continuously moving submerged body to the case of vibratory motion may be open to

question. Schadlofsky (6) has criticised Lewis in that his method shows the virtual

mass to be independent of frequency and amplitude. However neither of these con-

siderations is likely to be of importance in the frequencies encountered in ship

vibration. Lewis' method is not confirmed by high frequency model experiments made

at the U. S. Experimental Model Basin to be discussed later. On the other hand

F. H. Todd (8) has applied Lewis' virtual inertia values to a number of ships for
which the actual frequencies were measured. Of 13 examples the average error is

3.9 per cent, rejecting the maximum error of 44 per cent.
Schadlofsky (6) regards the water effect as a damping action which may be

expressed as an equivalent increase in weight by the formula
(nl' I (9a)

w =G( n--) ................................. (a)

which is identical with the virtual mass formula (9) given above. In Schadlofsky's

formula W is the damping resistance, G is the weight of the model or ship, nI is

the frequency in air, and nw the frequency in water.

Schadlofsky takes the view that the water effect cannot be determined by

mathematical analysis but must be determined by model measurements and that in
going from model to full scale ship the laws of dynamic similarity must be taken

into account. He shows that dynamic similarity between model and ship cannot be
attained with respect to both skin friction and resistance due to flow, but that

for the same Froude's number the resistance due to flow for the ship can be de-
termined from the model and that the neglect of the resistance due to skin friction

will cause but a small error.

Schadlofsky attempts to show that the damping resistance can be estimated
with sufficient accuracy for most practical cases from data he has collected on a

number of rectangular models and models of ship form. For this purpose he intro-

duces the non-dimensional damping index Kw = W/ln(e- where:
V is the actual damping resistance

1 is any linear dimension of the model
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n is the frequency

e is the mass density

Schadlofsky's experimental method was similar to Nicholl'sthe models con-

sisting of steel strips to which were fastened wooden blocks with a covering of rub.

ber between the blocks. The models were vibrated by means of electromagnets and

were supported at the computed nodes in air and in water.

The experiments showed that the damping resistance was a function of fre-

quency contrary to Lewis' theory. For ship forms the draft was found totbe of con-

siderable influence on the damping resistance as was also the position of the nodes.

The damping resistance was found to be minimum when the nodal position corresponded

to that of the free-free bar.

A recent study of this problem by J. J. Koch (13) who used an electrical

analogy is of academic interest and has not found practical application. A.Dimpker

(14), who set various forms in forced vibration in water, found the virtual mass to

be a function of draft and frequency.

Exact experimental verification of the various methods of computing the water

effect on full size ships is lacking because it is impossible to isolate the water

effect from other effects. Pallograph records of free vibrations on the U.S.S.

HAMILTON, induced by dropping the anchor, indicated that the logarithmic decrement

was 0.023. This low value is in agreement with measurements made by J. L. Taylor

(24), and indicates that the damping must be small and the inertia effect predom-

inant.

For a rough estimate it may be assumed that the effect of the water is to

lower the frequency by 25 per cent. For greater accuracy the theoretical method of

F. M. Lewis (12) or the empirical data of E. Schadlofsky (6) may be used.

From Schadlofsky's data it is estimated that the frequency of the U.S.S.

HAMILTON is lowered by 17 per cent due to water effect. From the data in Taylor's

first paper (5) this estimate would have been 16 per cent. In Lewis' method for
water correction the effect cannot be isolated since the virtual mass is added

directly to the weight of the ship. To find the water effect separately the compu-

tation must be repeated with the virtual mass omitted.

c. Correction for Effect of Elastic Behavior.

The correction that must be applied to Nth for the variation in elastic be-

havior of a ship from that of a slender beam is as controversial a matter as that

of the water effect although the magnitude of the correction is less.

The first of the elastic effects to be taken account of in vibration theory

is the deflection due to shear, which for the slender beam is negligible in propor-

tion to the bending deflection. As the shear deflection indicates a decrease in

rigidity this effect tends to lower the natural frequency.

A further effect is the increase in deflections of boxlike structures as
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.o-zparod with simple beams. There is also the eflcut of rotary inertia of the su*

perstructure which causes the frequency to be lower than it would be if all points

executed merely a vertical simple harmonic motion.

In previous methods it was the practice to use a reduced value of the elastic

modulus called the effective modulus of structure to allow for the combined effects,

but as they came to be better understood it seemed preferable to treat them sepa-

rately.

To allow for elastic behavior Taylor corrected the theoretical frequency by

the formula

NthNYf (1 + r)(1 + r')(1 + r)

where r is the ratio of shear deflection to bending deflection, r' is the ratio of

rotational kinetic energy to total kinetic energy, and r" is the ratio of virtual

inertia of the surrounding water to the inertia of the ship.

Schadlofsky likewise amended the theoretical frequency obtained from the

graphical computation by a number of correction factors using the formula:

N N,+_h .. (2
ki . k2 * (1 k3+(k + k4 )(1 + k7, (1.)

here k= ratio of total moment of inertia to effective moment of inertia

k2 ' ratio of actual deflection to deflection calculated from flexure theory

k3 = ratio of shear deflection to bending deflection multiplied by an

empirical constant dependent upon the number of decks
k4 = ratio of rotational kinetic energy to total kinetic energy

k5 = ratio of damping resistance to weight of ship

With this formula the value of E to be used is 2.1 x 106 kg/cm2 = 30 x 106 lb/in2.

Sufficient data are supplied in Schadlofsky's paper for estimating the various k's.

In the case of the U.S.S. HAMILTON these values are as follows:

kI1 = 1.015; k2 = 1.050; k3 = .075; k4 = .032; k 5 = .436

Applying the above correction factors to the theoretical frequencies of fi,-

ships Schadlofsky was able to check measured values with a maximum error of 1.5 .

cent.

The corrections of Schadlofsky should be applicable to the theoretical com-

putation made by any of the methods discussed as they are all based on the same

initial assumptions.

Comparative figures for the U.S.S. HAMILTON computed by the three methods
discussed are shown in the following table. Lewis' virtual mass was omitted from

the computations and hence the theoretical frequencies are comparable.
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Table II

U.S.S. HAMILTON - COMPUTATION OF TWO-NODED VERTICAL FREQUENCY

Taylor's Schadlofsky's Lewis'

Simplified Method Tabular

Method Method

Theoretical frequency (Nth) 140 150 148

Correction factor 1 1

for water effect F

Correction factor for 1 1

shear deflection 4.5 41.075

Correction factor for 1 1

rotary inertia 4--I.O32

Correction factor for effec- 1

tive moment of inertia 41.015

Correction for variation of

actual from theoretical de- 1

flection with loading _I.050

Value of E used (lb.per sq.in. 30 x 106 30 x 106 30 x 106

Comouted freguency 110 115

Exoerimental frequency 107 107 107

Error +3% +7*%

[Note: In reference 28 the value of Nth obtained by Taylor's method was reported

as 147 per minute and the computed frequency as 116 per minute. Due to an error

in reading the scale of the integraph these values were incorrect and the values

given in the above table should be substitutedJ

While the error in the computed frequency is less in this case by Taylor's

simplified method than by Schadlofsky's, it is believed that the value for the

theoretical frequency computed by the latter method is more accurate and that the

errors are due to the correction factors.

While thus the theoretical computations of the vertical two noded frequency

gives results in fair agreement with experimental values, the data required for the

computation are usually not readily available and the simple Schlick formula is

preferable where the degree of accuracy required will permit.

Where the theoretical computation seems desirable the tabular method of

Lewis is sufficiently accurate and fulfills both end conditions. In using this

method the water effect is best allowed for by adding the virtual mass of each see-

tion to the weight using Lewis data (12). This, however, will not give the
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theoretical frequency separately. The effect of elastic behavior may be allowed for

by using either Taylor's or Schadlofsky's data, omitting the water correction factor

in this case. An alternative to the above procedure is to use Lewis' tabular method

without including the virtual mass and to apply to the results, which in this case

is the theoretical frequency, formula (11) or (12). In lieu of the correction for-

mula here the actual frequency can be closely approximated by reducing the theo-

retical frequency by 30 per cent.

A further discussion of the relative merits of Schlick's formula and the the-

oretical computations is given in sections 6 and 7.

4. Other Tvoes of Vibration

In general two-noded horizontal vibration can be treated in the same manner

as two-noded vertical vibration, and was provided for in the Schlick formulas. H.

W. Nicholls (10) applied his energy balance method to horizontal vibration in the

same way as to vertical vibration. J. L. Taylor (5) points out that interaction

between horizontal and torsional vibration may occur when the center of mass of the

section does not coincide with the center of area. The computation of horizontal

frequencies requires a knowledge of the moment of inertia about a vertical axis.

The first study of torsional vibration of ships apparently was made by L.

Gumbel (16) who applied to the ship the theory of torsional vibration of shafts. A

graphical method was worked out by H. W. Nicholls (10) based on Lewis' method for

irregular shafts (17). In this method the equivalent shaft is considered to have a

continuously varying mass moment of inertia whereas Gumbel assumed a number of con-

centrated masses attached to the shaft each representing a section of the ship. F.

Horn (18) found as did Nicholls that the effective polar moment of inertia of the

section was considerably lower than the calculated. Recognizing that an accurate

calculation of the torsional frequencies is seldom practical because of the amount

of labor involved Horn offered the simple formula:

N D L ..... ......... (13)

where N = frequency
g = acceleration of gravity

G = shear modulus of elasticity

=to M polar moment of inertia of midship section
D = displacement

io - radius of gyration of total weight with respect to the centroidal axis

L - overall length of ship
c - empirical coefficient.

c can be obtained only from data on similar ships and will vary for the same ship
with change in loading.
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Taylor's method for torsional vibration (5) as for flexural vibration is to

assume an amplitude profile. In this case the graphical method requires only two

integrations. The calculated rigidity of the section is reduced by an empirical

factor derived from Vedeler's investigation of the torsion of ships (19). Taylor

as well as Nicholls excludes internal fluids in computing mass moment of inertia.

Taylor points out also that the axis of torsion is not the centroid and that the

stresses due to torsion are not proportional to the distance from any one point.

With regard to the higher harmonics it may be said that theory has not been

developed up to the present time to the point where harmonics higher than the three

noded type can be computed with any degree of accuracy. As the number of nodes in-

creases the ratio of the span between nodes to the depth and beam becomes so small

that the flexure theory of beams does not hold even approximately. The only guide

to the estimate of frequencies above the three noded type is a comparison with

measured values for similar ships. Moreover at the higher frequencies it is dif-

ficult to tell whether a vibration of the complete hull structure is taking place

or whether the effect is due to a local resonance of various parts of the structure.

5. Vibration Investigations at the U.S. Experimental Model Basin

a. Model Eyperiments;

An attempt was made at the U.S. Experimental Model Basin to study the effect

of the water on the natural frequency by model experiments. In these model experi-

ments ship conditions were simulated as far as possible both as to the construction

of the models and as to the method of inducing vibration.

Two models were made of sheet steel one rectangular and the other triangular

in cross section. The details of construction are shown in the drawings, Figs. 3

and 4. For both models the length is 18 ft., beam 27 in., and depth 171 in.,

giving the ratios: L/B = 8.0; l/D = 12.3; B/D - 1.54. The section is uniform over

a length of 15 ft. with pointed ends extending 11 ft. The material used is a sheet

steel of nominal thickness 0.050 in. except for the outer deck glates which are

0.079 in. The elastic modulus of the material averaged 29 x 10 lWin'. Spot

welding was used throughout except that the upper flanges of the transverse bulk-

heads were bolted to the deck. The triangular model has two transverse stiffeners

between bulkheads which were not included in the rectangular model. It was found

necessary to reinforce the deck of the triangular model between bulkheads with

wooden braces to eliminate local vibrations.

For setting up vibration a small vibration generator manufactured by

Losenhausenwerk was used. This machine, shown in the photograph Fig. 5, consists

of two parallel shafts permanently geared so as to rotate in opposite directions,

each shaft carrying the armature of a d.c. shunt motor. On the ends of the shafts

are adjustable weights b•' means of which various degrees of unbalance can be
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produced setting up sinusoidal forces or force moments. According to the manner of

setting the weights vertical, torsional, or tilting oscillations can be produced.

A precision tachometer gives the speed of the shafts and hence the impressed fre-

quency. In using this machine the convenient unit of angular velocity is the Hertz,

or one revolution per second.

The models were loaded with steel weights each 2 in. x 4 in. x 12 in. weigh-

ing approximately 28 lb. In a preliminary test the rectangular model was uniformly

loaded to a total load of about 3000 lb. and set upon two rollers resting on a con-

crete floor, the rollers being placed under the theoretical nodes. The vibration

generator was set in a frame which was clamped to the deck as shown in the photo-

graph, Fig. 6. Upon running the machine it was found that the weights would not

stay fixed in position due to the high acceleration and this made it impossible to

produce a condition of resonance. It was considered unsatisfactory to bolt the

weights to the model because the increase in stiffness would have raised the fre-

quency beyond the capacity of the machine. This would also have made theoretical

computations difficult because of the unknown change in stiffness. It was therefore

decided to pour in a layer of marine glue so as to immerse the weights to a depth

of about one inch. After doing this resonance could be produced but it was found

impossible to produce a symmetrical vibration. The slightest adjustment intended

to level up the model would shift the vibration from one end to the other.

To overcome this condition a steel framework was made from which the model

was syspended by 72 springs as shown in the photograph, Fig. 7. The springs were

calculated to make the natural frequency of the model as a whole on this suspension

about 100 per minute which was far below the flexural frequencies to be investiga-

ted. This method of supporting the model out of water eliminated the uncertainty

as to the proper location of the nodal points and closely simulated a free-free bar.

Since over 100 free vibrations could be counted after giving the model a deflection

it was apparent that the springs introduced very little damping.

The practical working range of the vibration generator was found to be from

900 to 2700 vibrations per minute or from 15 to 45 Hertz. The lower limit was de-

termined by the unsteadiness of running of the machine at high eccentricities. The

upper limit was determined by overheating of the controls. In order to obtain

resonance curves it was necessary not only that both the resonance in air and water
lie within this range but that they lie near the center of this range. The most

favorable loading for both models was found to correspond to a draft of about 16

inches which was about the limit of their capacity. The only two favorable dis-

tributions of load were the uniform distribution and the condition where the load

was concentrated at the center and the two ends. Resonance could not be produced

with all the load concentrated at the ends or in the center.

The investigation was confined accordingly to the four following cases:
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1 - Tachometer

2 - Adjustable weights

Fig. 5. Small Vibration Generator.
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Uniform load and load concentrated at three points for both the rectangular and

triangular models. For each case measurements and computations were made of the

natural frequency in and out of water.

Amplitudes were read by means of a vibrograph consisting of an inertia ele-

ment suspended by springs against which the stem of a dial gage pressed. This is

shown in Fig. 6. The natural frequency of the element was about 2 Hertz. It was

found that amplitudes less than 0.015" could be read satisfactorily within the

range 15 to 45 Hertz.

The experimental procedure was as follows: The model having been properly

loaded was suspended from the steel frame by the springs. The eccentricity of the

vibration generator was set at the smallest value that would produce a distinct

resonance. Amplitudes were read at the center of the model which in this case re-

quired placing the amplitude meter on top of the vibration generator ,tself. The

machine was then run with gradually increasing speed while the amplitudes were re-

corded up to the highest speed at which readings could be obtained. Readings were

continued as the speed was gradually decreased. If the data revealed a definite

resonance the generator was then run at this speed and a series of amplitude read-

ings was taken along the length of the model. Fig. 8 shows a typical resonance

curve and Fig. 9 an amplitude profile. In attempting to locate the nodes it was

found simplest to hold one of the dial gages in the hand, the inertia of the gage

itself being sufficient at these high frequencies to give an indication of the point

of minimum amplitude. The exact position of the nodal points, however, could not be

determined within less than -+ 3 inches. These data having been recorded with the

model on the spring suspension, the springs were removed and the model lowered into

the water whereupon the whole process was repeated with the model floating freely.

The basin at this point was 10 ft. wide and 4 ft. 2 in. deep.

For each of the cases mentioned graphical computations were made using the

methods of J. L. Taylor (5) and E. Schadlofsky (6). Computations were also made by

the uniform bar formula for those cases closely simulating uniform loading. Shear

deflections were computed for both models by the theoretical formula

-= //I / m/t dsjdx

where G = shear modulus
Q - total vertical shear

I = moment of inertia of entire section about neutral axis
m = moment about the neutral axis of the area between the point under

consideration and the center line of top deck
ds = element along the shell measured from top deck center
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*Ad tho eallt of shear was included 1a the computation of the natural frequencies.

For disoussion of shear deflection see reference 29. I11 applying Schaalofsky's

method to the models, corrections for effective width and elastic behavior were

omitted and the shear correction factor was derived from the above formula. Bow-

ever, for completeness, the correction factor including all the effects studied by

Schadlofsky is given in next to the last line of Table IV below, and here the shear

factor as well as the other factors are the same for both models. The theoretical

water correction method of F. M. Lewis was applied to the graphical computation in

both of the non-uniformly loaded cases, and also directly in the uniformly loaded

cases ty the uniform bar formula with the virtual mass added as a lump sum. The

results of the measurements and computations as well as other items of interest are

given in the following tables.

Table III

kloJel Dimensiops

Rectangular Model Triangular Model

Length (ft.) 18 18

Beam (in.) 27 27

Depth (in.) 171 171

Displacement (1b) 3034 1490

Draft (in.) 16 16

Moment of Inertia of Section (ft' in*) 2.56 1.19

Weight of hull (lb.) 458 358

Weight of ballast (lb.) 2576 1132

Number of bulkheads 6 6

Thickness of plating (in., 0,05 0.05

L/B (Length/Beam) 8,0 8.0

L/D (Length/Depth) 12.3 12.3

B/D (Beam/Depth) 1.54 1.54

Beam/Draft 1.69 1.69
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Table IV

Measured and Computed Quantities (all frequencies expressed in Hertz)

Rectarwular Model Triular Model
uniform concentrated uniform concentrated
loading loading loading loading

Measured frequency in air 34.0 32.8 39.0 33.0

Measured frequency in water 26.0 31.8 35.2 32.9
Dinta nod._ from ccenter - air 5.0 ft. 5..0 ft, .4.2 ft. .4,4j ft

"0 -water 5.0 ft. 5.0 ft. 5.0 ft. 5.0 ft.

Frequency in air computed by
Taylor's method with correc- 39.0 32.2 39.2 31.9
tion for shear deflection ----.
Frequency in air computed by
Schadlofsky's method with cor- 39.0 33.0 39.2 32.5rection for shear deflection

Frequency in air computed by
Schadlofsky' s method without 41.2 34. 5 40.4 33.5

correction for shear deflection

Natural frequency in air by
uniform bar formula with cor- 40.4 39.8
rection for shear deflection

Ratio of shear to bending 0.084 0.094 0.059 0.063
deflection computed
Virtual mass by Lewis' method 89 89 84 84
(per cent of displacement)
Frequency in water computed by
Taylor's method with Lewis' 28.8 25.9 28.8 26.1
virtual mass added

Frequency in water computed by
Schadlofsky's method with Lewis' 29.1 27J3 29.1 26.5
virtual masc added .......

Per cent virtual mass by formula:
71 6 23 3

1 -100 x wI

V . k2 * (1 + k3)(1 + k4) 1.12 1,12 1.12 1.12

according to Schadlofsky
nth/1.12 36.8 30.8 36.1 i9.9
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it is seen from Table IV that the measured frequencies in air check those

ucoaputed by either Taylor's or Schadlofsky's method in three out of four cases. The

probable explanation of the discrepancy in the case of uniform loading for the rec-

tangular model in that the glue which in this case alone covered the whole bottom

caused a damping effect due to internal friction. Fig. (10) illustrates the graph-

ical computation for the triangular model by Schadlofsky's method.

Next it is to be observed that the effect of the water was much less in the

case of concentrated loading than in the case of uniform loading for both models.

This is consistent with the fact that the concentration of the ballast at the anti-

nodes increases the flexural inertia of the ship while the water inertia is not

greatly changed. Hence the damping action is relatively less for the case of con-

centrated loading. However, the fact that damping action for the case of concen-

trated loading causes less than a 3 per cent lowering of tho frequency is surprising

The application of Lewis' virtual mass factors to the graphical computations

did not predict the frequencies in water within 10 per cent for uniform loading and

within 20 per cent for concentrated loading. However as previously mentioned the

full scale measurements of F. H. Todd indicate that Lewis' method is more reliable

at low frequencies.
Unfortunately the range of r-4 values (reciprocal of Froude's number) in-

vestigated by Schadlofsky, namely, from 0.39 x 10-2 to 3.85 x 10-2, does not include

our models which had an F- 1 value of about 0.15 x 10-2. Schadlofsky's experiments

showed definitely that the water effect increases with frequency, a fact ignored in

Lewis' theory. On the other hand, the high frequencies used in the model experi-

ments are not encountered in practice. The magnitude of Schadlofsky's corrections

for elastic behavior is shown in the last two items of Table IV. Comparison of

measured values in air with those computed with these corrections indicates that

Schadlofsky's factors, at least for these models, are too high. Schadlofsky's

curves give a ratio of shear to bending deflections of 0.17, whereas, the computed

values range from 0.06 to 0.09.

The results at the Experimental Model Basin seem to indicate that the cor-

rection for shear deflection and the correction for water effect are all that need

be taken into account in deducing the actual frequency from the theoretical frequenay.

As the water effect necessitates the largest single correction to the theo-

retical frequency it would seem that without model measurements which in general

are not feasible, the frequency cannot be forecast with an accuracy better than

±5 per cent by methods now in use.

b. Full Scale Fxperimpnts

In full scale testing the U. S. Experimental Model Basin conducted measure-

ments on four fleet oilers in 1929 (20) by the method of dropping the anchor.

Recording was done with a Sperry pallograph. Also, at this time the natural
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frequency of the battleship OKLAHOMA was determined by running the engines in the

region of resonance and recording the vibration with the pallograph. The anchor

method was used in this case as a check. For the tanker CUYAMA and the battleship

OKLAHOMA, computations were made by Taylor's method, by a variation of Lewis' tabu-

lar method, and by Taylor's method with Lewis' correction for virtual mass. For the

CUYAMA, the frequency computed by Taylor's method with Lewis' correction for virtual

mass was 5 per cent higher than the measured value. For the OKLAHOMA it was 19 per

cent lower.

In 1932 the 25 ton vibration generator built by Losenhausenwerk of Dasseldorf,

Germany, was acquired by the Model Basin. This machine is shown in the photograph,

Fig. 11. A discussion of the use of this type of machine in bridge testing is given

in ref. (21). Opportunity did not present itself to make a test with this machine

until May, 1933, when it was installed on the destroyer HAMILTON. This test is de-

scribed in ref. (28). The test showed considerable change in the water effect with

depth of channel. The natural frequency increased from 92 to 107 per minute in

going from a depth of 17 feet to a depth of 27 feet. The upper value was later

checked by pallograph measurements at a considerably greater depth. The computation

by the graphical method of J. L. Taylor with correction for shear and rotary inertia

would have required the introduction of the water correction factor I to

check the measured frequency if the correction were applied as a lump factor. The

Schlick constant required to check the measured value would have been 1.16 x 105.

The three noded resonance in "deep" water occurred at 206 vpm or 1.93 times the

fundamental as against 2.76 for the uniform bar or 2.26 for bars with pointed ends,

according to Schadlofsky. These figures might serve as a basis for estimating the

two and three noded frequencies of other destroyers either by the Schlick formula

or the graphical computation.

c. Vibration Recording

Because of the low frequencies encountered in the study of hull vibration

the recording instruments must be of different design from the usual instruments

for stationary worK. As this particular field of vibration has only recently re-

ceived much attention, few instruments suitable for such measurements are as yet

available. At the time of the test on the U.S.S. HAMILTON just mentioned, a suit-

able pallograph was not available at the Experimental Model Basin with the result

that the only amplitude measurements made were those taken from shore by sighting

with a surveyor's transit. Subsequently the Type "A" pallograph shown in the

photograph, Fig. 12, was made. The inertia element which is suspended by a set of

fulcrum springs has a natural frequency of 20 per minute so that it accurately re-

cords frequencies of the order of 100 per minute. This instrument was used to re-

cord vibration during one of the trials of the U.S.S. HAMILTON, March 26-7, 1934.

Analysis of these records showed that vibration occurred both in the bow and in the
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stern in the neighborhood of the two and three noded resonances previously determined
with the vibration generator. In every case the frequency recorded was either the

same as the shaft RPM or three times as much, indicating that impulses were being set

up both by the propeller blades as well as by unbalance in the propellers themselves.
The anchor was dropped in shallow water after which 34 vibrations were recorded by
the pallograph at a frequency of 99 per minute as compared with 92 per minute meas-
ured previously in shallow water. From this record it was possible to estimate the
logarithmic decrement of damping due to skin friction and internal friction dis-
cussed in section 3 (b).

These measurements indicated that the problem can be studied during ordinary
runs without the necessity of installing the vibration generator and with this in

view a more portable pallograph, the type "B" shown in the photograph, Fig. 13, has
recently been designed.

6. Tabulation of Available Data on Ship Frequencies
For reference there are tabulated below the results of measurements already

reported in technical publications. In cases where no information is available for
making computations these figures may serve as an indication of the ranges in which

resonance is likely to occur. The computed values were obtained by various methods
and in many cases the good agreement with measured values is due to the arbitrary
use of correction factors.

Table V

Author Type of Displacement Type of Frequency
and Vessel (tons) Vibration

reference Meas. Comp.

Todd (8) Cargo 7,940 2 node vert. 100 109.5
Tanker 15,190 " 78.9 74.2

"4,377 105-6 107.5

Cargo 6,590 " 81-2 117.8

"3,835 " 109 112.2

Tanker 4,180 104-5 102.5
"1,877 115 121

Cargo 10,070 100 105

Tanker 5,180 90-1 91.3
Cargo 13,000 W 78.5 77.5
Tanker 11,475 98.5 95.8

"12,832 " 80.0 87.5

14,635 80.0 81,5

Tobin (22) Tanker 2 node vert. 76 75.4

Liner 3 " " 150 148.7
"4 - 269

Tanker 8,300 2 " " 112 -

Nicholls (10) Destroyer 1,378 2 node vert. 120 135
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Author Type of Displacement Type of Frequency
and Vessel Vibration

reference Mess. Comp.

Nicholls (10) Destroyer 1,378 2 node hor. 150)

to) 164
180)

1,378 3 node vert. 170 284

1,378 3 hor. 260)
to ) 326
390)

1,378 1 node tors. 630)
to) -

700)

Horn (18) Liner 12,750 2 node hor. 125)
to) 127.3

130)

Schadlofsky Tanker 16,600 2 node vert. 81 81.5

(6) Cable 205)
layer 834 2 w N to) 210

210)

Destroyer 1,378 2 " " 120 118.2

Tanker 8,160 2 " " 112 112

Freighter 8,360 2 " " 105 104.1

Lovett (23) Passenger 2 node vert. 65
"2 w 0 84

2 "" 67
"2 " 59

Tanker 2 " " 76

"2 " " 112

Schmidt (15) Motorship 7,010 2 " 105)
to) 106.3

108)

Taylor (24) 9,300 2 " 120.2 118
4,100 2 " 148 151
6,550 2 100 98.5

9,050 2 " " 89 92

12,700 2 " 79 80.5

6,850 2 " " 92 93
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Author Type of Displacement Type of Frequency
and Vessel Vibration

reference Meas. Comp.

Taylor (24) 9,300 3 node vert. 250.5 236
8,000 3 " " 214 206

12,700 2 " hor. 106 104.5

6,850 2 " 147 142
8,000 2 " " 137 135

Todd (25) Cargo 7,940 2 node vert. 100(0) -

Tanker 15,190 2 " " 78-9 121

"4,377 2 " W 105-6 -

Cargo 6,590 2 " " 81-2 142

"3,835 2 " " 109 121

Tanker 4,180 2 " " 104-5 124
"4,377 2 " " 105-6 144
"1,877 2 " " 115 198

Cargo 10,070 2 " " 100 125

Tanker 5,180 2 " " 90-i 130

Cargo 13,000 2 " " 78.5 -

Tanker 11,475 2 " " 98.5 121

"12,832 2 " 80 107

14,635 2 N 80 93
"6,400 2 " 112 138

"8,200 2 " " 112 124

"15,700 2 " " 72--76 -

Roop (4O) Oiler 15,430 2 node vert. 60.3 63.3
"7,600 2 " 88.5 -

"12,600 2 " 81.1 -

"10,000 2 " " 73.5 -

Battleslip 32,000 2 " " 82 -

Cole (4) Tanker _ 5,800 2 " " 112 12

In the case of those vessels for which sufficient data were available the

equivalent values of the Schlick constant required to check the measured frequen-

cies were calculated. These values are tabulated in Table VI.
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Table VI - Experimental Values of Schlick Constants

Author Type of Displacement Overall Moment of Measured Equiv.
and Vessel (tons) Length Inertia Frequency Schlick
Reference (feet) amidships x 4  (per min.) Constpnt(ft'in') 0 x 10-2

Todd (8) Tanker 15,190 440 476,000 6.08 78.9 1.30

Tobin (22) 1 8,300 350 233,890 8.11 112 1.38

Nicholls Destroyer 1,378 310 33,000 8.96 120 1.34
(10)

Schmidt Motorship 7,010 484 718,000 9.50 106 1.12
(15)

Schadlofsky Tanker 16,600 462 604,000 6.08 81 1.33
(6) Cable laye 834 181 15,600 17.8 207.5 1.17

Tanker 8,160 366 234,000 7.65 112 1.47

Freighter 8,360 371 264,000 7.88 105 1.33

Cole (4) Tanker 8,151 350 233,890 8.19 112 1.37

E. M. B.
Report #372 Destroyer 1,382 310 35,000 9.22 107 1.16
Roop (20) Tanker 15,430 475 447,000 5.20 60.3 1.16

Battleship 32,000 583 I1,325,000 4.57 77.1 1.69

The average of the Schlick constants tabulated in Table VI is 1.32 x 105,

and the average deviation from this value is ±8.6 per cent.

7. Conclusions

The average deviation in the experimentally determined value of Schlick's

constant for the ships tabulated in the previous section compares very favorably

with the estimated probable error of ±5 per cent for the theoretical computations.

Hence because of its simplicity the Schlick formula is to be preferred in the major-

ity of cases. Sufficient data are not now available for selecting a value of

Schlick's constant according to the class of vessel, and hence the average value

1.32 x 105 is at present the best for all types. With the accumulation of data in

the near future it should be possiole to select a better value according to the type

of ship.

The graphical methods of Taylor and Schadlofsky and the tabular method of

Lewis are accurate for computing the theoretical frequency but the subsequent cor-

rections to the theoretical frequency remain in some doubt. Of these corrections

only those for shear deflection and water effect are of sufficient magnitude to be

taken into account. The shear deflection lowers the frequency by about 5 per cent
and the water effect lowers it by about 25 per cent.
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The flexure theory is not applicable to the computation of higher harmonics

and the only guide here is the collection of data on other ships.

From the measurements tabulated in section 6 it appears that the two noded

vertical frequencies fall within a rblatlvely narrow range on either side of 100

vibrations per minute, and hence in many cases the frequency could be estimated di-

rectly from this table. The close relation between the two noded vertical frequen-

cy and the strength problem, however, lends importance to the theoretical calcula-

tion. If the water effect were definitely known the effective EI, which is the

measure of bending strength, could readily be deduced from the natural frequency.

This is shown by the close agreement between measured and computed frequencies for

the models when vibrated out of water.
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